Guest Ника

B3 метод узлов

Recommended Posts

Guest Ника   
Guest Ника

Метод узлов в задаче B3

Существует замечательная формула, которая позволяет считать площадь многоугольника на координатной сетке почти без ошибок. Это даже не формула, а настоящая теорема. На первый взгляд, она может показаться сложной. Но достаточно решить пару задач — и вы поймете, насколько это крутая фишка. Так что вперед!

Для начала введем новое определение: Определение

Узел координатной стеки — это любая точка, лежащая на пересечении вертикальных и горизонтальных линий этой сетки. Обозначение sample1.png

На первой картинке узлы вообще не обозначены. На второй обозначены 4 узла. Наконец, на третьей картинке обозначены все 16 узлов.

Какое отношение это имеет к задаче B3? Дело в том, что вершины многоугольника в таких задачах всегда лежат в узлах сетки. Как следствие, для них работает следующая теорема: Теорема

Рассмотрим многоугольник на координатной сетке, вершины которого лежат в узлах этой сетки. Тогда площадь многоугольника равна: formula1.png

где n — число узлов внутри данного многоугольника, k — число узлов, которые лежат на его границе (граничных узлов). Пример

Рассмотрим обычный треугольник на координатной сетке и попробуем отметить внутренние и граничные узлы. sample2.png

На первой картинке дан обычный треугольник. На второй отмечены его внутренние узлы, число которых равно n = 10. На третей картинке отмечены узлы лежащие на границе, их всего k = 6.

Задача [Диагностическая работа. Формат ЕГЭ]

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см. Ответ дайте в квадратных сантиметрах. sample5.png Решение

Снова отмечаем внутренние и граничные узлы. Внутренних узлов всего n = 2. Граничных узлов: k = 7, из которых 4 являются вершинами четырехугольника, а еще 3 лежат на сторонах. sample6.png

Остается подставить числа n и k в формулу площади: formula3.png

(Павел Бердов)

Share this post


Link to post
Share on other sites

Создайте учётную запись или войдите для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать учётную запись

Зарегистрируйтесь для создания учётной записи. Это просто!

Зарегистрировать учётную запись

Войти

Уже зарегистрированы? Войдите здесь.

Войти сейчас


  • Сейчас на странице   0 пользователей

    Нет пользователей, просматривающих эту страницу